12 research outputs found

    Ultrafast photocurrents at the surface of the three-dimensional topological insulator Bi2Se3\mathrm{Bi}_2\mathrm{Se}_3

    Full text link
    Topological insulators constitute a new and fascinating class of matter with insulating bulk yet metallic surfaces that host highly mobile charge carriers with spin-momentum locking. Remarkably, the direction and magnitude of surface currents can be controlled with tailored light beams, but the underlying mechanisms are not yet well understood. To directly resolve the "birth" of such photocurrents we need to boost the time resolution to the scale of elementary scattering events (\sim 10 fs). Here, we excite and measure photocurrents in the three-dimensional model topological insulator Bi2Se3\mathrm{Bi}_2\mathrm{Se}_3 with a time resolution as short as 20 fs by sampling the concomitantly emitted broadband THz electromagnetic field from 1 to 40 THz. Remarkably, the ultrafast surface current response is dominated by a charge transfer along the Se-Bi bonds. In contrast, photon-helicity-dependent photocurrents are found to have orders of magnitude smaller magnitude than expected from generation scenarios based on asymmetric depopulation of the Dirac cone. Our findings are also of direct relevance for optoelectronic devices based on topological-insulator surface currents

    Singular robust room-temperature spin response from topological Dirac fermions

    Get PDF
    Topological insulators are a class of solids in which the nontrivial inverted bulk band structure gives rise to metallic surface states that are robust against impurity scattering. In three-dimensional (3D) topological insulators, however, the surface Dirac fermions intermix with the conducting bulk, thereby complicating access to the low energy (Dirac point) charge transport or magnetic response. Here we use differential magnetometry to probe spin rotation in the 3D topological material family (Bi2_2Se3_3, Bi2_2Te3_3, and Sb2_2Te3_3). We report a paramagnetic singularity in the magnetic susceptibility at low magnetic fields which persists up to room temperature, and which we demonstrate to arise from the surfaces of the samples. The singularity is universal to the entire family, largely independent of the bulk carrier density, and consistent with the existence of electronic states near the spin-degenerate Dirac point of the 2D helical metal. The exceptional thermal stability of the signal points to an intrinsic surface cooling process, likely of thermoelectric origin, and establishes a sustainable platform for the singular field-tunable Dirac spin response.Comment: 20 pages, 14 figure

    Stable topological insulators achieved using high energy electron beams

    Full text link
    Topological insulators are transformative quantum solids with immune-to-disorder metallic surface states having Dirac band structure. Ubiquitous charged bulk defects, however, pull the Fermi energy into the bulk bands, denying access to surface charge transport. Here we demonstrate that irradiation with swift (2.5\sim 2.5 MeV energy) electron beams allows to compensate these defects, bring the Fermi level back into the bulk gap, and reach the charge neutrality point (CNP). Controlling the beam fluence we tune bulk conductivity from \textit{p}- (hole-like) to \textit{n}-type (electron-like), crossing the Dirac point and back, while preserving the Dirac energy dispersion. The CNP conductance has a two-dimensional (2D) character on the order of ten conductance quanta G0=e2/hG_0 =e^2/h, and reveals, both in Bi2_2Te3_3 and Bi2_2Se3_3, the presence of only two quantum channels corresponding to two topological surfaces. The intrinsic quantum transport of the topological states is accessible disregarding the bulk size.Comment: Main manuscript - 12 pages, 4 figures; Supplementary file - 15 pages, 11 figures, 1 Table, 4 Note

    Stable topological insulators achieved using high energy electron beams

    Full text link
    Topological insulators are potentially transformative quantum solids with metallic surface states which have Dirac band structure and are immune to disorder. Ubiquitous charged bulk defects, however, pull the Fermi energy into the bulk bands, denying access to surface charge transport. Here we demonstrate that irradiation with swift (B2.5MeV energy) electron beams allows to compensate these defects, bring the Fermi level back into the bulk gap and reach the charge neutrality point (CNP). Controlling the beam fluence, we tune bulk conductivity from p- (hole-like) to n-type (electron-like), crossing the Dirac point and back, while preserving the Dirac energy dispersion. The CNP conductance has a two-dimensional character on the order of ten conductance quanta and reveals, both in Bi2Te3 and Bi2Se3, the presence of only two quantum channels corresponding to two topological surfaces. The intrinsic quantum transport of the topological states is accessible disregarding the bulk size

    Topological Lifshitz transition in Weyl semimetal NbP decorated with heavy elements

    Full text link
    Studies of the Fermi surface modification after in-situ covering NbP semimetal with heavy elements Pb and Nb ultrathin layers were performed by means of angle-resolved photoemission spectroscopy (ARPES). First, the electronic structure was investigated for pristine single crystals with two possible terminations (P and Nb) of the (0 0 1) surface. The nature of the electronic states of these two cleaving planes is different: P-terminated surface shows spoon and bow tie shaped fingerprints, whereas these shapes are not present in Nb-terminated surfaces. ARPES studies show that even 1 monolayer (ML) of Pb causes topological quantum Lifshitz transition (TQLT) in P- and Nb-terminated surfaces. Deposited Pb 5d electrons have wide extended atomic orbitals which leads to strong hybridization with Pb-terminated surface and a corresponding shift in the Fermi energy. Nb has less capability to perturb the system than Pb because Nb has weaker spin-orbit coupling than Pb. Nb-terminated surface subjected to surface decoration with approximately 1.3 ML of Nb shows no dramatic modification in the Fermi surface. In the case of Nb decorated P-terminated surface, deposition of approximately 1 ML modifies the electronic structure of NbP and it is on the verge of TQLT. Despite the strong spin-orbit and strong hybridization of the heavy elements on the surface, it is possible to observe the TQLT of the surface states thanks to the robustness of the bulk topology.Comment: 9 Pages, 8 Figure

    Electronic properties of TaAs2TaAs_{2} topological semimetal investigated by transport and ARPES

    No full text
    We have performed electron transport and ARPES measurements on single crystals of transition metal dipnictide TaAs2 cleaved along the (2\overline{2} 0 1) surface which has the lowest cleavage energy. A Fourier transform of the Shubnikov-de Haas oscillations shows four different peaks whose angular dependence was studied with respect to the angle between the magnetic field and the [2\overline{2} 0 1] direction. The results indicate the elliptical shape of the Fermi surface cross-sections. Additionally, a mobility spectrum analysis was carried out, which also reveals at least four types of carriers contributing to the conductance (two kinds of electrons and two kinds of holes). ARPES spectra were taken on freshly cleaved (2\overline{2} 0 1) surface and it was found that bulk states pockets at the constant energy surface are elliptical, which confirms the magnetotransport angle dependent studies. First-principles calculations support the interpretation of the experimental results. The theoretical calculations better reproduce the ARPES data if the theoretical Fermi level is increased, which is due to a small n-doping of the samples. This shifts the Fermi level closer to the Dirac point, allowing to investigate the physics of the Dirac and Weyl points, making this compound a platform for the investigation of the Dirac and Weyl points in three-dimensional materials.Comment: 12 pages, 13 figure

    Manipulating the Topological Interface by Molecular Adsorbates: Adsorption of Co-Phthalocyanine on Bi 2 Se 3

    No full text
    International audienceTopological insulators are a promising class of materials for applications in the field of spintronics. New perspectives in this field can arise from interfacing metal–organic molecules with the topological insulator spin-momentum locked surface states, which can be perturbed enhancing or suppressing spintronics-relevant properties such as spin coherence. Here we show results from an angle-resolved photemission spectroscopy (ARPES) and scanning tunnelling microscopy (STM) study of the prototypical cobalt phthalocyanine (CoPc)/Bi2Se3 interface. We demonstrate that that the hybrid interface can act on the topological protection of the surface and bury the Dirac cone below the first quintuple layer

    Manipulating the topological interface by molecular adsorbates: adsorption of co-phthalocyanine on Bi2Se3

    No full text
    Topological insulators are a promising class of materials for applications in the field of spintronics. New perspectives in this field can arise from interfacing metal–organic molecules with the topological insulator spin-momentum locked surface states, which can be perturbed enhancing or suppressing spintronics-relevant properties such as spin coherence. Here we show results from an angle-resolved photemission spectroscopy (ARPES) and scanning tunnelling microscopy (STM) study of the prototypical cobalt phthalocyanine (CoPc)/Bi2Se3 interface. We demonstrate that that the hybrid interface can act on the topological protection of the surface and bury the Dirac cone below the first quintuple layer
    corecore